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Abstract

We present an optimization framework for uncertainty

estimation in a regression problem. To obtain predictive

uncertainty inherent in the observation, we formulate re-

gression with uncertainty estimation as a multi-task learn-

ing problem and a new uncertainty loss function, inspired

by variational representations of robust estimation. Con-

trary to existing approaches, our approach allows balanc-

ing between the predictive task loss and uncertainty esti-

mation loss. We evaluate the efficacy of our approach on

NYU Depth Dataset V2 and show that our proposed method

consistently yields better performance than the previous ap-

proaches, for both depth and uncertainty estimation.

1. Introduction

Despite the rapid progress made in deep visual learning,

the difficulty in interpreting models limits their adoption in

practical applications, especially in safety-critical domains

(e.g., self-driving, health care). The aleatoric uncertainty

is inherent in the observation and cannot be reduced with

more data [4].

In this paper, we present a novel optimization framework

for the aleatoric uncertainty in a regression problem, by for-

mulating it as multi-task learning. Our method learns to

predict the target output y and uncertainty σ by optimizing

a separated loss: L(y, σ) = L(y) + λL(σ), as shown in

Figure 1. On the contrary, previous approaches in aleatoric

uncertainty estimation use a Bayesian deep learning frame-

work [4, 5], in which the formulation of the loss function

cannot be factored into a regression loss L(y) and uncer-

tainty estimation loss L(σ) (we call this approach as “Joint

Formulation”). This results in a drawback: the trade-off

between regression performance and uncertainty estimation

performance cannot be adjusted due to this non-separability.

Previous studies in multi-task learning show that relative

weighting between multiple task objectives is crucial [6].
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Figure 1: An overview for aleatoric uncertainty estimation

in deep depth estimation. The y and σ are learned to pre-

dict depth values and its uncertainty, respectively. Whereas

existing methods use a joint loss function L(y, σ) that can-

not be separated into L(y) and L(σ), we propose a separate

multi-task loss L(y) + λL(σ).

Our method addresses the shortcoming of the existing ap-

proaches. First, our separable formulation of the loss func-

tion can adjust the performance of regression and uncer-

tainty estimation by controlling λ. Second, this formulation

also allows us to choose an arbitrary loss function for un-

certainty. We introduce a new loss function for uncertainty

estimation inspired by the variational representation of ro-

bust estimation.

To demonstrate the effectiveness of our proposed frame-

work, we conduct experiments on RGB-based depth predic-

tion dataset, namely NYU Depth Dataset V2. We show that

our method substantially outperforms Joint Formulation,

for both depth and uncertainty estimation performance, en-

joying the benefits of controlling the balance between two

losses and choosing an appropriate loss for uncertainty.

2. Proposed Method

In this work, we focus on a pixel-wise regression prob-

lem. Let D = {(xi,y
∗

i )}
n
i=1 be a training dataset of images

and target values. Our goal is to train a network that pre-

dicts a target value y and its uncertainty u (or confidence
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w = 1/u) for every pixel.

2.1. Uncertainty Estimation as Multi­task Learning

Here, we assume that we have a deep learning model

which predicts both a target value y and its confidence value

w. We formulate regression with uncertainty estimation as

multi-task learning problem. Therefore, our loss function

L(θ) has two terms, Lt(y) and Lu(w), which are loss func-

tions of regression and uncertainty estimation as follows:

L(θ) =
1

|D|

n
∑

i=1

m
∑

j=1

Lj(xi,θ), (1)

Lj(x,θ) = Lt(yj(x;θ)) + λLu(wj(x;θ)), (2)

where λ is a weighting parameter between the two losses.

For the choice of Lt(y), we can use any loss function of the

regression problem, such as the L2 loss and L1 loss between

a network output y and a ground truth y∗. Contrary to the

existing approach, this separate formulation enables us to

choose the uncertainty loss, as well.

2.2. A New Uncertainty Loss

Uncertainty is the expected estimation error and is larger

for data with larger error. The loss of uncertainty Lu(w)
should be constructed so that w predicts the inverse estima-

tion error. For example, we can consider the L2 distance:

Lu(w) = ‖1/|y∗ − y| − w‖22. However, this loss functions

is counter-intuitive – two uncertainty outputs of the target

output value with infinite uncertainty (w=0) and the target

output value with half value of correct uncertainty (w=2/r)

have the same loss, which seems to under-estimate the loss

of infinite uncertainty.

To overcome this problem, we introduce the loss func-

tion inspired by variational representations of robust esti-

mation. The optimization problem of robust regression is

formulated as

min
θ

∑

i

f(ri(θ)), (3)

where ri(θ) is the ith residual, θ is a model parameter, and

f(r) is a robust loss function, which is sometimes noncon-

vex. To solve Eq. (3), a variational representation of robust

loss [1, 12] is employed, which transforms f(r) into

f(r) = min
w

wg(r) + h(w). (4)

The optimal w can be obtained by the first-order deriva-

tive of Eq. (4), and it reflects data reliability: w is small

when r is large. Similar to Eq. (4), we formulate Lu(w)
as Lu(w) = wg(r) + h(w), where g(r) is an arbitrary loss

function. We use g(r) = |y∗ − y| in this paper.

In this work, we introduce a new uncertainty loss func-

tion, and we employ h(w) = 1
w

:

Lu
inv(w) = wg(r) +

1

w
, (5)

The derivative of Eq. (5) on w is

∂Lu
inv

∂wi

= g(r)−
1

w2
. (6)

The optimal value is w∗ = 1/
√

g(r). Lu
inv(w) also has a

large value at w → +0. Lu
inv has multiplicative symmetry

with respect to w∗

i : Lu
inv(αw

∗) = Lu
inv(w

∗/α) holds. This

symmetry is an intuitively proper characteristic for uncer-

tainty estimation.

Our loss function Eq. (1) is differentiable, and we can

train a network via gradient descent. The derivative of Lj

defined by Eq. (2) on θ is computed by

∂Lj

∂θ
=

∂Lt
j

∂θ
+λ

(

∂wj

∂θ
g(r) + wj

∂g(r)

∂r

∂r

∂θ
+

∂h(wj)

∂wj

∂wj

∂θ

)

.

However, the term
∂g(r)
∂r

hinders us to separate two objec-

tives, and thus in this work, we detach the gradient of g(r)
and treat the depth regression residual of g(r) as constant

(we do not detach the gradient of Lt
j). The derivative of

Lu(w) on θ is computed by

∂Lu
j

∂θ
=

∂wj

∂θ
g(r) +

∂h(wj)

∂wj

∂wj

∂θ
. (7)

3. Experiments

We conduct experiments on a widely used RGB-based

depth prediction dataset, NYU Depth Dataset V2 [10]. We

split the data with the official split, where 249 scenes are

used for training and the remaining 215 are used for testing,

and use the network based on Sparse-to-Dense [8], follow-

ing the experimental settings in [8].

As in previous studies in depth estimation [3, 7, 8], we

evaluate the depth estimation performance with root mean

squared error (RMSE), mean absolute relative error (REL),

mean absolute error (MAE) and δi, which represents the

percentage of the pixels where the relative error is within

a threshold. To accurately evaluate the uncertainty estima-

tion performance, we adopt sparsification plots, which have

been commonly used in confidence measurement fields of

optical flow estimation [2, 9, 11]. In sparsification plots, the

pixels are removed by order of uncertainty, that is, pixels

with higher uncertainty would be removed first. We use the

following three metrics: area under the curve (AUC) of the

sparsification plots, RMSE p30 (the RMSE averaged over

the pixels after removing ones with 70% highest uncertain-

ties), and spearman’s rank correlation coefficient (CC) be-

tween the examined uncertainty values and the correspond-

ing end-point errors.

4. Results

Table 1 shows a comprehensive comparison of our pro-

posed method and the previous approach of uncertainty
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Table 1: Depth and uncertainty estimation results on NYU Depth Dataset V2.

Depth Estimation Uncertainty Estimation

loss RMSE (↓) REL (↓) MAE (↓) δ1 (↑) CC (↑) AUC (↓) RMSE p30 (↓)

L1 (w/o uncertainty) 0.530 0.148 0.387 0.804 – – –

Joint Formulation 0.531 0.149 0.388 0.803 0.334 0.180 0.463

Ours (λ = 0.5) 0.521 0.146 0.380 0.814 0.346 0.185 0.453

Input GT Depth Prediction Errors Uncertainty

(Ours) (Joint) (Ours) (Joint) (Ours) (Joint)

Figure 2: Examples of the predicted results on NYU Depth Dataset V2. From left to right: input RGB images (Input),

the ground-truth (GT) depth maps for the inputs, predicted depth maps (Depth Prediction), the absolute errors (Errors), and

expected uncertainty maps (Uncertainty) from our method and Joint Formulation, respectively. Regarding error maps and

uncertainty maps, the red regions have larger values, while the yellow regions contain smaller values. On depth maps, the

blue or green regions contain small depth values.

estimation. Our proposed method (“Ours”, the bottom

row) achieves better depth estimation performance from the

model without uncertainty estimation (the top row) and the

one with uncertainty estimation given by Joint Formulation

(the middle row). Our method also achieves better uncer-

tainty estimation performance than Joint Formulation on all

metrics other than AUC. Figure 2 shows a qualitative com-

parison of the proposed method and the previous method.

The two examples show that the previous approach is more

likely to produce large uncertainties even for the regions

with smaller errors.

We evaluate the performance of both depth estimation

and uncertainty estimation using different loss-weighting

parameters, λ. As shown in Figure 3, the depth estima-

tion performance measured with RMSE deteriorates when

the λ is set to a larger value, while with a smaller λ value,

where a model learns to pay more attention for depth esti-

mation, the CC decreases dramatically. Another finding is

that, at some optimal weighting, the model performs better

than any of other weightings, both for depth and uncertainty

estimation.

5. Conclusion and Future Work

In this paper, we present an optimization framework for

aleatoric uncertainty estimation in a regression problem:

separating the two loss functions, Lt and Lu and deriving a

new objective with weight λ. Our experimental results on

!

CC RMSE

Figure 3: Results with different weightings on NYU

Depth Dataset V2. RMSE is a measurement for depth es-

timation performance (the lower, the better), and CC is a

measurement for uncertainty estimation performance (the

higher, the better). For RMSE, we inverted the y-axis.

NYU Depth Dataset V2 showed that our proposed method

was superior to previous studies, both in depth and uncer-

tainty estimation. For future work, we intend to conduct

experiments on other regression tasks like optical flow esti-

mation as well as on another RGB depth estimation task.
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